
SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

Konstantinos Iordanou, Oscar Palomar, John Mawer, Cosmin
Gorgovan, Andy Nisbet and Mikel Lujan.

{first}.{last} @manchester.ac.uk

FCCM 2019
Tuesday, April 30  

 1

Agenda

• Motivation.
• How can we design fast and accurate simulators?
• Simulator Infrastructure.
• Simulation of accelerated applications.
• Performance & Evaluation.
• Conclusions & Future Work.

 2

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 3

Motivation.

Motivation

In simulator’s world, “good” and effective simulators are:
Fast, Accurate, Complete, Transparent, Inexpensive & Current.
However… many of the above properties conflict with each other.

 4

Evaluate next generation processor and system architectures:
• software-based cycle-accurate simulators.
• These simulators are: transparent, easy-to-use and can be cycle-accurate but are

generally not fast or complete and often not current.

Detail

Performance

Flexibility

Pick  
two

How can we design fast and accurate simulators?

• Proposing FPGA-based simulation which is based on the
well known functional/timing model partitioning.

• This partition leverages two realisations:
• functional model runs efficiently in parallel with the

timing model.
• the timing models because of the parallelism and

silicon efficiency compared to a full implementation of
an architecture can be implemented (easily) in a single
FPGA.

 5

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 6

Simulator
Infrastructure.

Simulator Infrastructure

• The simulator consists of the following main components:
• Dynamic Binary Modification Tool (MAMBO).

• Scans the application and copies it to a software code
cache.

• It transforms the code to maintain correctness & control.
• Doing other modifications (plugins via an API).

• MAST library.
• Hardware Timing Models.

• Out of order pipeline Model (arm Cortex A9).
• Cache Hierarchy Models.

• Data cache, icache, L2 cache, Snoop Module.

 7

• A C++ library and hardware interface standard/
Bluespec library which:
• Allows discovery of MAST compliant IP on an FPGA.
• Allows management of compliant hardware e.g.

locking blocks, reconfiguration of FPGA.
• Provides a userSpace interface to hardware.
• Enables IP accelerator blocks to be easily and

efficiently integrated into applications.

 8

Simulator Infrastructure - MAST

• SimCtrl: manages the system for an
application.
• Discovers hardware.
• Allows allocation/locking of a

hardware to a process (or a thread).
• Handles memory management.
• Requirements of hardware e.g virtual

-> physical lookups.
• SimObject: is an interface to a

hardware IP.
• Handles all interactions between

application and IP.
• Maintains information on system

RAM used by hardware. (e.g. physical
addresses)

 9

Dynamic Binary
Instrumentation

Plugins

SimObject SimCtrl SimObject

Hardware
Models

Hardware
Models

Utilization, Performance, etc.

Simulator Infrastructure - MAST

 10

Dynamic Binary
Instrumentation

• An efficient dynamic binary modification tool for arm architectures.
• Modifies the machine code of 32 bit and 16 bit instructions during execution.
• MAMBO plugins: driving our hardware models.
• MAMBO plugins: consist of a set of callbacks which are executed at various points

of program execution.

branch, 
mem accesses  
& PC changes

Simulator Infrastructure

 11

Pipeline Model

Cache  
Model

Programmable logic

• Pipeline Model (inspired by arm Cortex-A9 dual-issue processor)
• re-order buffer, register renaming module, branch prediction models,

implementations of Branch Target Buffer (BTB), return address stack (RAS), and the
load/store queue supports memory aliasing.

• Cache System Model:
• It gathers statistics about the behaviour of a cache system. Only address tags and

states for cache lines.

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Simulator Infrastructure

 12

• Every model includes registers which count events like read/write hits
or misses per cache level, instruction counters, simulated cycles,
branch hits and misses.

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Pipeline Model

Cache  
Model

Programmable logic

Simulator Infrastructure

 13

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Pipeline Model

Cache  
Model

Programmable logic

Simulator Infrastructure

 14

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Pipeline Model

Cache  
Model

Programmable logic

*Change
Branch Predictor?

*Change the Ld/St queue size?
*Use of BTB or not?

*Change the size of MSHRs?
*Use ST buffer?

Simulator Infrastructure

 15

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Pipeline Model

Cache  
Model

Programmable logic

 *Use a new cache
memory hierarchy

model?

Simulator Infrastructure

 16

Dynamic Binary
Instrumentation

branch, 
mem accesses  
& PC changes

Pipeline Model

Cache  
Model

Programmable logic

Simulator Infrastructure

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 17

Simulation of accelerated
applications.

• A methodology for including in the simulation the
interaction of processors and accelerators.

• Using unmodified IP blocks, which are wrapped with
logic to capture the memory accesses they initiate
and simulate them.

• Implementing conventional FPGA-based
accelerators, such as image processing filters, and
access these from regular applications (Bluespec
System Verilog or HLS).

 18

Simulation of accelerated applications

 19

High Level  
 C tuning

Simulator

Programmable logic

High Level 
Synthesis

C/C++ code

Low Level Optimization
using RTL

Simulation of accelerated applications

accelerator

 20

High Level  
 C tuning

Simulator

accelerator

Programmable logic

High Level 
Synthesis

C/C++ code

Low Level Optimisation
using RTL

Simulation of accelerated applications

 21

High Level  
 C tuning

Simulator

accelerator

Programmable logic

High Level 
Synthesis

C/C++ code

Low Level Optimisation
using RTL

Simulation of accelerated applications

• ACP Snoop:
It intercepts the ACP accesses,
creates a descriptor for them and
sends the original request to the
actual ACP port.
• Access generator:
It is responsible of retrieving
descriptors from the ACP Snoop, and
break them into individual memory
accesses to send to the cache
model.
• Cache Arbiter:
It handles requests from the pipeline
model and from the accelerator and
send them to the Cache Hierarchy
model

 22

CPU
Cache

PS Part

Dynamic Binary
Instrumentation

Pipeline Model
Cache 
Arbiter

Cache
Model

Access generator

ACP Snoop Accelerators PL Part

Simulation of accelerated applications

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 23

Performance & Evaluation.

Experimental Evaluation

• SimAcc uses:
• Xilinx Zynq-7000 XC7Z045 evaluation board running

Ubuntu 14.04 with 1GB DRAM (no swap), and dual 667MHz
arm Cortex-A9 processors.

• For the experimental evaluation, we are using gem5:
• DerivO3 CPU model.

• Benchmarks:
• SPEC CPU 2006.
• Mach Benchmark Suite, Computer Vision Applications.

 24

Simulator Results - Execution Time

go
bm

k

lib
qu
ant

um

xal
anc

bk mc
f

om
net gcc bzi

p2

1

10

100

1000

10000

0

1

2

3

4

5

6

7

8

9
SimAcc Gem5 Achieved SpeedUp

E
x
ec
u
ti
o
n

T
im

e
in

m
in
u
te
s

A
ch
ie
v
ed

S
p
ee
d
U
p

 25

Detail Flexibility

Performance

Simulator Results - Simulated Cycles

go
bm
k

lib
qu
an
tu
m

xa
la
nc
bk m

cf

om
ne
t

gc
c

bz
ip
2

1E+08

1E+09

1E+10

1E+11

0.0

0.5

1.0

1.5

2.0

2.5
SimAcc Gem5 Ratio(Gem5/SimAcc)

S
im

ul
at
ed
 C

yc
le
s

R
at
io
(G

em
5/
S
im

A
cc
)

 26

Detail Flexibility

Performance

Simulator Results - L2 cache

 27

gob
mk

lib
qua

ntu
m

xal
anc

bk mc
f

om
net gcc bzi

p2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10
.6

5.
3 RD_hits RD_misses WR_hits WR_misses

R
at
io
 (
G
em

5/
S
im

A
cc
)

Detail Flexibility

Performance

SimAcc Results - SVO (HLS)

 28

S
m
al
l
C
ac
h
e

M
ed
iu
m

C
ac
h
e

H
L
S

p
ip
el
in
e

M
ed
iu
m

C
ac
h
e

H
L
S

u
n
ro
ll

M
ed
iu
m

C
ac
h
e

H
L
S

U
n
ro
ll
+
p
ip
el
in
e

M
ed
iu
m

C
ac
h
e

L
ar
g
e
C
ac
h
e

0

0.2

0.4

0.6

0.8

1

L1 Read miss rate L1 Write miss rate L2 Read Miss rate

L2 Write Miss rate Simulated Cycles

Detail Flexibility

Performance

SimAcc Results - ORB-slam (Bluespec SystemVerilog)

 29

Small Cache Medium Cache Large Cache
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 Read Miss rate L1 Write Miss rate L2 Read Miss rate

L2 Write Miss rate Simulated Cycles

Detail Flexibility

Performance

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 30

Conclusions &
Future Work.

Conclusions & Future Work
• Conclusions:

• We have demonstrated the potential of combining a flexible IP hardware library,
a user-level driver library and dynamic binary instrumentation for
microarchitecture simulation and prototyping.

• We exploit the advantages of an FPGA SoC to accelerate at a very fine
granularity (instructions).

• We can benefit from the accuracy and speed of FPGA-based modelling and the
ability to run binaries.

• It is the first FPGA-based simulator for arm combined with accelerators,
significantly extending the options for simulating arm processors.

• Future work:

• Use of an Ultrascale+ Zynq board. (e.g. faster CPUs, improved memory interface)
• Extend the models to include more micro-architectural features and alternatives.
• Multi-core version of the Simulator Infrastructure.

 31

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 32

Thank you.

SimAcc: A Configurable Cycle-Accurate
Simulator for customized accelerators on
CPU-FPGAs SoCs

 33

BackUp Slides

Simulator Results - data & L2 cache

 34

gobm
k

libq
uant

um
xala

ncbk mcf omn
et gcc bzip

2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.
8

2.
0

1.
8

13
.8

3.
6

3.
3

2.
4

4.
3

2.
9

2.
0

RD_hits RD_misses WR_hits WR_misses MSHR Hits MSHR Misses

R
at
io
 (
G
em

5/
S
im

A
cc
)

gob
mk

lib
qua

ntu
m

xal
anc

bk mc
f

om
net gcc bzi

p2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10
.6

5.
3 RD_hits RD_misses WR_hits WR_misses

R
at
io
 (
G
em

5/
S
im

A
cc
)

