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Motivation.



Motivation

In simulator’s world, “good” and effective simulators are: 
Fast, Accurate, Complete, Transparent, Inexpensive & Current. 
However… many of the above properties conflict with each other.
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Evaluate next generation processor and system architectures: 
• software-based cycle-accurate simulators. 
• These simulators are: transparent, easy-to-use and can be cycle-accurate but are 

generally not fast or complete and often not current. 
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How can we design fast and accurate simulators?

• Proposing FPGA-based simulation which is based on the 
well known functional/timing model partitioning. 

• This partition leverages two realisations: 
• functional model runs efficiently in parallel with the 

timing model. 
• the timing models because of the parallelism and 

silicon efficiency compared to a full implementation of 
an architecture can be implemented (easily) in a single 
FPGA. 
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Simulator  
Infrastructure.



Simulator Infrastructure

• The simulator consists of the following main components: 
• Dynamic Binary Modification Tool (MAMBO). 

• Scans the application and copies it to a software code 
cache. 

• It transforms the code to maintain correctness & control. 
• Doing other modifications (plugins via an API). 

• MAST library. 
• Hardware Timing Models. 

• Out of order pipeline Model (arm Cortex A9). 
• Cache Hierarchy Models. 

• Data cache, icache, L2 cache, Snoop Module.
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• A C++ library and hardware interface standard/
Bluespec library which: 
• Allows discovery of MAST compliant IP on an FPGA. 
• Allows management of compliant hardware e.g. 

locking blocks, reconfiguration of FPGA. 
• Provides a userSpace interface to hardware. 
• Enables IP accelerator blocks to be easily and 

efficiently integrated into applications.
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Simulator Infrastructure - MAST



• SimCtrl: manages the system for an 
application. 
• Discovers hardware. 
• Allows allocation/locking of a 

hardware to a process (or a thread). 
• Handles memory management. 
• Requirements of hardware e.g virtual 

-> physical lookups. 
• SimObject: is an interface to a 

hardware IP. 
• Handles all interactions between 

application and IP. 
• Maintains information on system 

RAM used by hardware. (e.g. physical 
addresses)
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Dynamic Binary 
Instrumentation

• An efficient dynamic binary modification tool for arm architectures. 
• Modifies the machine code of 32 bit and 16 bit instructions during execution. 
• MAMBO plugins: driving our hardware models. 
• MAMBO plugins: consist of a set of callbacks which are executed at various points 

of program execution.
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Pipeline Model
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• Pipeline Model (inspired by arm Cortex-A9 dual-issue processor) 
• re-order buffer, register renaming module, branch prediction models, 

implementations of Branch Target Buffer (BTB), return address stack (RAS), and the 
load/store queue supports memory aliasing. 

• Cache System Model:  
• It gathers statistics about the behaviour of a cache system. Only address tags and 

states for cache lines.

Dynamic Binary 
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• Every model includes registers which count events like read/write hits 
or misses per cache level, instruction counters, simulated cycles, 
branch hits and misses.
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Simulation of accelerated 
applications.



•  A methodology for including in the simulation the 
interaction of processors and accelerators.  

• Using unmodified IP blocks, which are wrapped with 
logic to capture the memory accesses they initiate 
and simulate them. 

• Implementing conventional FPGA-based 
accelerators, such as image processing filters, and 
access these from regular applications (Bluespec 
System Verilog or HLS).
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Simulation of accelerated applications
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• ACP Snoop: 
It intercepts the ACP accesses, 
creates a descriptor for them and 
sends the original request to the 
actual ACP port. 
• Access generator: 
It is responsible of retrieving 
descriptors from the ACP Snoop, and 
break them into individual memory 
accesses to send to the cache 
model. 
• Cache Arbiter: 
It handles requests from the pipeline 
model and from the accelerator and 
send them to the Cache Hierarchy 
model
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Performance & Evaluation.



Experimental Evaluation

• SimAcc uses: 
• Xilinx Zynq-7000 XC7Z045 evaluation board running 

Ubuntu 14.04 with 1GB DRAM (no swap), and dual 667MHz 
arm Cortex-A9 processors. 

• For the experimental evaluation, we are using gem5: 
• DerivO3 CPU model. 

• Benchmarks: 
• SPEC CPU 2006. 
• Mach Benchmark Suite, Computer Vision Applications.
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Simulator Results - Execution Time
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Simulator Results - Simulated Cycles
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Simulator Results - L2 cache
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SimAcc Results - SVO (HLS)
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SimAcc Results - ORB-slam (Bluespec SystemVerilog)
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Conclusions &  
Future Work.



Conclusions & Future Work
• Conclusions: 

• We have demonstrated the potential of combining a flexible IP hardware library, 
a user-level driver library and dynamic binary instrumentation for 
microarchitecture simulation and prototyping. 

• We exploit the advantages of an FPGA SoC to accelerate at a very fine 
granularity (instructions). 

• We can benefit from the accuracy and speed of FPGA-based modelling and the 
ability to run binaries. 

• It is the first FPGA-based simulator for arm combined with accelerators, 
significantly extending the options for simulating arm processors. 

• Future work: 

• Use of an Ultrascale+ Zynq board. (e.g. faster CPUs, improved memory interface) 
• Extend the models to include more micro-architectural features and alternatives. 
• Multi-core version of the Simulator Infrastructure.
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Simulator Results - data & L2 cache
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